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Abstract-The rising frequency of NASA mission  launches 
has  highlighted the need  for  improvements  leading to faster 
delivery of mission software without  sacrificing  reliability. 
In April 1998  Jet  Propulsion  Laboratory  (JPL) initiated the 
Mission Data System (MDS) project to rethink  the  mission 
software l i fecyc lef rom early mission  design to mission 
opera t iopand make  changes  to  improve software 
architecture and software  development processes. As a 
result, MDS has  defined  a unified flight, ground, and  test 
data system  architecture  for space missions  based on object- 
oriented  design, component architecture, and domain- 
specific frameworks.  This  paper  describes several 
architectural  themes  shaping the  MDS design  and  how  they 
help  meet objectives  for faster,  better, cheaper mission 
software. 
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1. INTRODUCTION 

deep  space missions  tend to  be one-of-a-kind,  each 
with distinct science  objectives, instruments,  and  mission 
plans.  Until  recently,  these  missions  were  spaced years 
apart, with little  attention to software  reuse,  given  the 
relatively  rapid pace of computer technology  and computer 
science.  Also, since radiation-hardened  flight  computers 
remain years behind  their  commercial  counterparts in speed 
and  memory,  flight  software has typically  been highly 
customized and tuned for  each mission. Thus, when JPL 
launched  six  missions in six months  between October  1998 
and  March 1999, it wasn’t surprising that there was little 
software reuse  among them, except in the  ground  system. 

However,  despite  the uniqueness of each  mission, they each 
had to independently design and develop mechanisms  for 
communication. commanding, attitude control, navigation, 
power  management, fault protection, and many other 
standard  tasks, yet there was no common architecture or 
frameworks for them to build  upon. Clearly, in an era of 
monthly  missions,  this is  an inefficient way to use software- 
engineering resources. 

Another change affecting our  approach to deep  space 
mission software is the  advent  of high performance, 
commercially  standard  flight computing systems  suitable for 
flight  use.  Sufficient capability now  exists to justify 
investing  a  substantial  part of the  system  resources to 
reusable  designs and “off-the-shelf’ components, which are 
typically not as  efficient  as  customized code. 

This additional capability is also a  timely  boost to increased 
autonomy  that new missions require as we move  into an era 
of in situ exploration. 

2. THE MISSION DATA SYSTEM PROJECT 

In  order to use software-engineering  resources  more 
effectively  and to sustain  a quickened pace of missions, 
while supporting  the  steady  advances required by new 
missions, JPL initiated  a project in April 1998  to  define and 
develop  an advanced  multi-mission  architecture  for an end- 
to-end  information system  for  deep-space missions. The 
system, named “Mission Data  System”  (MDS), is aimed at 
several  institutional objectives: earlier  collaboration of 
mission,  system  and software  design; simpler,  lower  cost 
design,  test, and operation; customer-controlled  complexity; 
and  evolvability to in situ exploration and  other  autonomous 
applications. JPL’s Telecommunication  and  Mission 
Operations  Directorate  (TMOD)  manages  the  MDS project. 

3. THE MDS VISION 

Software  development  for  space missions is obviously  part 
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Figure 1. In the traditional approach, subsystem  teams  worked in isolation  and created individual  solutions to 
shared problems. In  the architectural approach they apply standard MDS  frameworks  and services. 

of a much larger endeavor, but software plays  a  central and 
increasingly  important  system role that must be reconciled 
with the  overall systems  engineering approach  adopted by a 
project. 

Software and  systems  engineering are highly interdependent 
for two  reasons. First,  software  needs systems  engineering 
products. It must know how  things work. It  needs to 
understand  interfaces.  And it has to  honor the  system 
engineer's intentions. Second, software is essential to 
systems  engineering.  It  largely determines  the behavior  and 
performance of a system.  It manages the  capabilities  and 
resources of a  system. And it presents one's operational 
view of a  system. 

To put it in  another way, both systems  engineering  and 
software  deal in the  more  abstract  aspects of a system. These 
are issues that apply from  the earliest conception of a 
mission until the last day of flight  operation. They apply 
across all constituents of a project and to all elements of the 
environment  affecting the system. Therefore,  it is essential 
that systems  and software  share a common approach to 
defining, describing,  developing, understanding,  testing, 
operating,  and  visualizing what systems do.  This is the 
fundamental  vision  and  philosophy  behind  the MDS design: 
that software is part of and contributes substantially to a new 
systems  engineering approach that  seamlessly spans  the 
entire project  breadth  and life cycle. 

This paper describes several  architectural  themes  shaping 
the  MDS  design.  These themes have been  highlighted 
because they have broad  impact on  the design  and because 
they differ  from earlier practices. However,  the themes are 
not novel ideas; they draw proven  ideas  from  control 
systems, robotics,  data networking,  software  engineering, 
and  artificial  intelligence. 

Although most of these  themes have resulted  from  a desire 

to  improve flight so f twareand  have compelling examples 
there-they apply  equally  to ground  software.  Also,  these 
themes apply equally to all  kinds of robots, whether 
spacecraft or  probes  or  rovers. 

4. ARCHITECTURAL THEMES 

Theme:  Take An Architectural  Approach 

Construct  subsystems from architectural  elements, not the 
other  way around-It has  been traditional in JPL missions to 
divide the  work along at  least five dimensions: flight- 
ground-test, design-test-operations, engineering- 
science, downlink-uplink, and  subsystems (navigation- 
power-propulsion-telecom, etc).  With the work so 
compartmentalized, software  engineers naturally applied 
their own customized solutions within each realm,  resulting 
in minimal reuse and  requiring  many  iterations  at  integrating 
the subsystems. The net  result was always  architecture 
constructed from subsystems. 

In  MDS there is a quest  to find common problems and 
create  common  solutions that can then be  tailored to 
particular problems. We refer to this  collection of common 
solutions as the  MDS framework.  It  provides  shared core 
elements  among different  systems,  eliminates  redundant or 
conflicting developments within systems,  and  assures 
uniformity across  the  architecture in order  to improve 
operability  and  robustness. 

Object oriented  analysis and design  accomplishes this to 
some  extent, but a fundamental driver in  this  approach  has 
been  the  recognition  that space system  designs are always 
tightly coupled,  despite best  attempts.  Highly  constrained 
resources  demand it. A key software role is to make this 
coupling manageable. Therefore, managing  interactions is 
also a foundation  of  good  design.  For  example, different 
activities  in  different subsystems issue  commands that 
consume  power, and  they can potentially  interfere with each 



other unless  there is a coordination service that keeps track 
of available  power and that has authority to control  each 
device.  Creating such a coordination  service enables  a 
cleaner  simpler  design because it controls interactions 
through  a  common service rather  than  through  private 
subsystem-to-subsystem  agreements,  thereby  decreasing  the 
apparent  coupling between  subsystems.  It  similarly 
simplifies unit testing of subsystems. The net result from 
applying  this approach is that  subsystems  get  constructed 
from  architectural elements, not the other way around. 

Theme:  Ground-to-Flight  Migration 

Migrate  capability from ground to flight,  when  appropriate, 
to simplifj, operations-MDS takes  a unified view of flight 
and  ground  tasks because of opportunity and  need.  With 
increasingly  powerful  flight  processors the opportunity 
exists to migrate to the  spacecraft (or  rover) some functions 
that have traditionally  been  performed on the  ground, 
thereby  reducing the need for flight-ground  communication. 
Such  migration might occur well after  launch,  after  ground 
operators  have gained experience with the real spacecraft 
and  have  decided that some activities  can be  automated, 
without  further  human-in-the-loop control. Migration can 
involve using the  same  code in flight as on  the ground, but 
frequently  flight  implementations are different  because  they 
exploit the  immediacy of their  interaction with the 
spacecraft.  Nevertheless,  uniformity in addressing other 
system  elements  permits  these  migrations to take place with 
minimal perturbation to the  rest of the system. 

More importantly, the need for such migration  exists in 
order to accomplish  missions  that  must  react  quickly to 
events, without  earth-in-the-loop  light-time delays, such  as 
autonomous  landing on a comet, and  rover  explorations on 
Mars.  By adopting a unified architecture, we assure that the 
wide range of possibilities  offered by these  missions can  be 
accommodated with a single MDS framework. For these 
reasons  both  flight  and  ground  capabilities  must  be  designed 
for a shared  architecture. 

Theme: State & Models  are Central 

System state and models  form  the  foundation  forinformation 
processing-MDS is founded upon a state-based 
architecture,  where state is a  representation of the 
momentary condition of an evolving system.  System  states 
include device  operating modes, device health, resource 
levels,  attitude  and  trajectory,  temperatures,  pressures, etc, 
as well as environmental states such  as  the  motions of 
celestial  bodies and  solar flux. Some  aspects of system state 
are best  described as functions of other states; e.g., pointing 
can  be  derived from attitude and trajectory. 

State representations are  closed in the  sense that nothing of 
relevance to  the system is left out.  While there may be 
elements of a project  outside the MDS purview, the external 
elements  are described  at  least  by  their  visible  behavior. 
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Figure 2. System  state is the  architectural 
centerpiece  for  information  processing. State is a 

representation of of the  momentary  condition of an 
evolving  system. 

In all cases in MDS state is accessible through state 
variables (as opposed  to a program’s  local  variables),  and 
state  evolution is described  on state  timelines. State 
variables are a complete representation of the  total  system, 
and  state timelines are a complete  record of a system’s 
history. They  capture  current  and past  estimates,  future 
predictions and plans,  and  past experience.  State timelines 
provide the  fundamental coordinating mechanism since they 
describe both knowledge  and intent. This information, 
together with models of state behavior,  provides  everything 
needed to predict and  plan,  and it is  available centrally in an 
internally  consistent form. 

State timelines are also the  objects of a  central uniform 
mechanism of information exchange between  flight and 
ground,  largely supplanting  conventional engineering  data 
traffic in both directions.  For instance,  telemetry  can be 
accomplished by relaying state histories to the ground, and 
communication schedules  can  be relayed as state histories to 
the  spacecraft.  Timelines  are relatively compact 
representation of state history, because  states  evolve only in 
particular  and  generally predictable ways. That is, they can 
be  modeled.  Therefore, timelines  can be transported much 
more  compactly than conventional time  sampled data. 

A state-based architecture implies the need for models since 
models describe how  a  system’s state evolves. Together, 
state and models  supply what is needed to  operate a  system, 
predict  future  state,  control  toward  a  desired  state,  and 
assess  performance. 



Figure 3. This  diagram  emphasizes several  architectural  themes:  the central  role of state knowledge and 
models,  goal-directed operation, separation of state determination from  control,  and  closed-loop control. 

-heme: Explicit Use of Models or any of several  forms, as long  as  they separate the domain 

Express  domain knowledge explicitly in models rather  than 
implicitly in program logic-Much of what makes  software 
different from mission to mission is  domain knowledge 
about instruments and actuators  and  sensors  and  plumbing 
and wiring and many other things. This knowledge  includes 
relationships  such  as  how  power  varies with solar incidence 
angle,  conditions such as  the fact that  gyros  saturate above a 
certain rate,  state machines  that prescribe  safe sequences for 
valve operation, and dynamic models that predict  how  long 
a turn will take. Conventional  practice  has  been to  develop 
programs  whose  logic  implicitly contains such domain 
knowledge,  but  this expresses the knowledge  in  a  “hidden” 
form that is hard to validate  and hard to reuse. In fact, it is 
often hard to discern  even  that some assumed domain 
knowledge has been  applied. One might see in the  code,  for 
instance, that an important command is issued  twice and 
gather  nothing  further  from it. Behind  this  innocent  act, 
however, is a  presumed  attempt to  be  sure the  command 
takes  effect, which implies  further that commands  are 
assumed  unreliable,  but not so much so that the  likelihood of 
a  second  failed  command is acceptably small. This leads one 
immediately into  questioning  the  nature and validity of this 
assumed model, which is nowhere to  be  found. 

In contrast,  MDS advocates  that domain knowledge be 
represented  more  explicitly in inspectable models. Such 
models can be  tables or functions or rules or  state machines 

knowledge from  the general  logic  for  applying that 
knowledge to  solve a problem.  The task of customizing 
MDS  for a  mission, then,  becomes largely  a task of defining 
and validating  models. 

Theme: Coal-Directed  Operation 

Operate missions via specifications of desired  state  rather 
than  sequences of actions-Traditionally,  spacecraft  have 
been  controlled  through  linear  (non-branching)  command 
sequences  that have been  carefully  designed on the  ground. 
Moreover, most commands  only specify  actions to take - 
usually in an  open  loop manner,  and  often under 
assumptions of a particular prior  state.  Such  design is 
difficult for two reasons. First,  ground  must  predict 
spacecraft state for the  time at which the  sequence is 
scheduled to start, and that’s  difficult to know with 
confidence  because of flighuground communication 
limitations (data  rate  and light-time  delay). Second, in the 
event that the actual spacecraft  state is significantly  different 
than the predicted state  at  any  time  during execution, the 
sequence should  be designed  to fail rather  than chance doing 
something  harmful. This  is usually  accomplished  outside  the 
sequence in  a separate  concurrent  fault monitoring  system, 
which then steps in  after the  sequence is terminated to 
impose  a  substantially  different  model of control on the 
system - one generally incompatible with sequencing. 



MDS, in contrast,  controls state---both flight  and  ground 
state“via “goals”. A goal  is defined  as  a  prioritized 
constraint on  the value of a state variable during a  time 
interval. The time  interval is allowed to float, subject to 
temporal  constraints.  A goal differs  from a  command in that 
it specifies  intent  in the form of desired  state.  Such  goal- 
directed  operation is simpler than traditional  sequencing 
because  a goal is easier  to specify than the  actions needed to 
accomplish it. Importantly, goals specify  only  success 
criteria; they leave options  open about  the  means of 
accomplishing  the  goal  and  the possible use of alternate 
actions to recover from problems.  A  goal is a unifying 
concept  that encompasses daily operations, maintenance  and 
calibration, resource allocation,  flight rules,  and fault 
responses. Of course, all of this begs the question of who or 
what elaborates  a goal into a  program of actions, which 
brings us to closed-loop control and goal-achieving 
modules. 

Theme: Closed Loop Control 

Design for real-time reaction  to  changes in state  rather  than 
for open-loop commands o r  earth-in-the-loop control- 
Goal-directed operation implies closed-loop  control.  In 
MDS a state controller is termed  a goal-achieving module 
(GAM). A GAM  controls  state by comparing present state 
(or  predicted future state) to desired state, then  deciding how 
to change the state if necessary,  then  issuing  either  sub-goals 
(with appropriate temporal  constraints) to lower-level 
GAMs  or issuing direct low-level  actions (i.e., primitive 
actions). When a GAM  accepts a goal it must  either achieve 
the goal or responsibly report that it cannot. A GAM’S logic 
can  be  arbitrarily simple  or sophisticated,  but it must  always 
keep  the goal issuer  informed about  the goal’s  status. 

Most  GAMs  achieve their  goals  by  issuing  sub-goals,  thus 
creating  a  hierarchy of GAMs. Naturally, the bottom layer of 
GAMs bottoms out in primitive actions. Importantly, GAMs 
can  report why they  acted  as  they  did in terms of what 
discrepancies  between state  and goals  prompted  action,  and 
what sub-goals or  commands were  issued  in response. Also, 
since  GAMs  are self-checking by definition,  goal  failures 
will be  visible  (through goal status) during testing. 

Theme: Real-Time Resource  Management 

Resource  usage must be authorized  and  monitored by a 
resource marzager-“Resources” are things like available 
battery  energy, power, fuel,  memory,  thermal  margin, etc. 
They  are any  state, in fact,  that is affected by other states  in 
a  potentially  conflicting way. Overuse of spacecraft 
resources  can be  disastrous, such as accidentally using too 
much power  near the  time of a  critical orbit insertion 
maneuver,  causing the spacecraft  power  bus to trip. For 
reasons  like  this  ground operators  have tended to  be very 
conservative  about resource usage,  especially  given  their 
time-delayed  knowledge of it. However, such  conservative 
operation limits the  amount of science data  acquisition  and 
return.  especially during  periods of great opportunity, such 

as during  a  fly-by or a  short-lived science event. 

MDS  avoids this  kind of operational  dilemma through a 
resource management mechanism that  prevents  overuse, 
even if a resource  is accidentally  oversubscribed. 
Specifically,  resource-using  activities are forced to obtain  a 
“ticket”  in order to use  a  given resource, much as one 
obtains a file  descriptor in order to access a  file. An activity 
must state  to a resource manager the  amount of resource and 
the time  interval when it is needed,  and  the  ticket is issued 
only if the usage does  not conflict with any  other higher- 
priority  usage. Further, if measurements show that more of a 
resource is being used  than  was  ticketed (such as might 
occur from  an unexplained  power drain), the  manager can 
disable  one  or  more tickets until an adequate margin is 
recovered. Because a resource manager  always  knows  the 
available  amount, other activities  can be triggered to 
opportunistically  use the  resource, thereby  increasing 
science  data return. 

A resource manager is  just  another  GAM, except that is 
deals in  constraints on  allowable  states instead of constraints 
on  the  state itself.. Issuing a  ticket is  the means by which it 
exercises  this  control. By treating resource management in 
this way it becomes  a  participant in the  larger state 
coordination process,  rather than a separate additional 
mechanism. 

Theme: Separate  State  Determination from State  Control 

For consistency,  simplicity and clarity,  separate  state 
determination  logic  from  control logic-It’s not unusual to 
see  software that  co-mingles  control logic with state 
determination  logic, but this  practice is usually a bad idea 
for three  reasons. First, if two or  more controllers  each make 
their own private determination  for  the  same state  variable, 
their  estimates may differ, potentially  leading to conflicting 
control  actions. Second, mixing  two  distinct  tasks in the 
same  module makes the  code harder to understand  and  less 
reusable. Third, these two tasks are  an ill fit in  the same 
module  because control  has  a  hierarchical  structure  based on 
delegation of authority  whereas state determination  has  a 
network structure based on pathways of interaction 
mechanisms  (electrical, thermal, etc.). 

Architecturally, MDS  separates  state determination from 
state  control,  coupled  only through state variables. State 
determination is a process of interpreting  measurements to 
generate  state  knowledge, and the  process may combine 
multiple sources of evidence into  a  determination of state, 
supplied to a state variable  as an estimate. Control, in 
contrast,  attempts to achieve goals  by  issuing  commands and 
sub-goals  that  should drive estimated state toward desired 
state. Keeping  these  two tasks separate simplifies  design, 
programming,  and  testing,  and also allows  for  independent 
improvements. 



Figure 4. An architecture that doesn't express  the 
amount of uncertainty in state estimates  prevents 
control  systems  from  exercising  caution during 
periods of higher-than-acceptable  uncertainty. 

Table 1. Fault protection is an integral  part of 
design, not an  add-on; its elements  appear throughout 

the  architectural  elements. 

An added  benefit is to avoid  the  temptation  often 
encountered in designs to warp an estimate to meet the 
objectives of control.  For instance, in order to attenuate  a 
controller's superfluous  reactions to noise, an estimate might 
be  smoothed  by  lowering  gains in the estimator. Not only 
does this link competing  performance criteria  in  a  single 
parameter,  but the system is now deprived of accurate 
information  about  this  state. Keeping  state determination 
separate  does not prevent  this distortion, but it does  express 
state knowledge in a  public  and  uniform  manner  that  permits 
a  consistent  pattern of testing  designed to identify  such 
breaches. Theme:  Integral  Fault  Protection 

Fault  protection  must  be an integral  part of the  design, not 
an add-on-Fault protection, which includes  fault  detection, 
localization, and recovery,  has generally  been  treated  as an 
add-on  to a basic  command & control  system.  As  such, it 
was  designed  as an adjunct  to  the control  system  and usually 
arrived  later  in the  project cycle. Such was  the case  for the 
Cassini  attitude  and  articulation control system, and an 
interesting  thing happened when fault  protection was first 
enabled: numerous faults  were  detected in a  control system 
that had already undergone a  fair amount of testing. The 
Cassini AACS team  learned more in that month than they 
had in the previous six months  because they finally had 
independent  detailed monitoring of system  behavior. 

In MDS fault protection will be an integral  part of the 
design-not an add-ow-because  it is an essential  part of 
robust  control  and because  it is extremely  valuable  during 
system  testing. Goal-achieving  modules in MDS need at 
least some minimum  level of fault detection since  they must 
report when an active  goal is not  being  achieved. GAMS 
may also  provide  recovery strategies  ranging from very 
simple  to very sophisticated.  In  any  case, this is always 
accomplished  entirely within the  same context and 
framework  as  normal operations, and it permits  fault 
recovery  that  restores  disrupted operations. Re-establishing 
a sequence after  a fault  is  no longer  a  heroic  effort.  It is 
simply  the way the  system  works all the time. 



Theme: Acknowledge State Uncertainty 

State  determination must be honest  about the  evideuce; 
state estimates a re  not facts-State values are rarely known 
with certainty, but a lot  of software  effectively  pretends that 
they are by  treating state estimates  as  facts.  However, 
disastrous errors  can result when control decisions  are based 
on highly uncertain  state. For  example, it is  probably unwise 
to perform  a  main-engine  burn when the estimated  position 
of the engine gimbals is below some minimum  certainty. 
Uncertainty  can arise in several ways, sometimes  as 
conflicting evidence,  sometimes through  characteristic 
degradation of sensors, and sometimes  during periods of 
rapid  dynamic change. 

MDS takes the position that a level of certainty  should 
accompany  every state estimate. State determination must be 
honest  about what the  evidence is telling it. If there are two 
credible pieces of evidence that  conflict,  and  there's no 
timely way to  reconcile the  conflict,  then the resulting state 
estimate  must have an appropriately reduced  level of 
certainty.  Similarly,  control  must  take  into  account  the 
certainty level of the  state  estimates upon which it is basing 
a decision. If certainty drops  below  some context-specific 
minimum, then control  must  react  appropriately, perhaps by 
attempting an alternate approach or by abandoning  a goal 
entirely. 

Uncertainty  can be  expressed in  a  number of ways,  ranging 
from complete probability  distributions to a simple 
enumeration of possible values.  It  isn't  essential that the 
representation be rigorously  statistical; often a  heuristic 
criterion will do.  The  only  rule is to represent  the 
uncertainty in state knowledge  effectively. 

Theme: Separate  Data  Management  from  Data  Transport 

Data  management  duties  and  structures  should  be 
separated from those of data transport-Flightlground data 
management  has long been  tightly  coupled with data 
transport  issues,  largely because  such capabilities  evolved 
from a  time when flight processors were  extremely  limited. 
This resulted in an  architecturally  flattened implementation 
approach where, for example,  application code was built 
around  the CCSDS packet  format. While  such designs had 
some  justification in the  speed and  memory  constraints of 
earlier  missions, the time  has come  to  adopt a  cleaner 
layered  separation and prepare  for the day when spacecraft 
are in fact nodes in an inter-planetary  network. 

MDS clearly  distinguishes  between data management and 
data  transport.  The former elevates  data products  as  entities 
in their  own  right,  as objects and  files  that can  be updated 
and  summarized  and aged, and  that  may or may not be 
destined for the  ground or  some  other recipient. In  fact,  data 
management is a service that transcends  the  flight-ground 
divide so that data products are treated  consistently in all 

places. Data transport,  in contrast,  can access  any  data 
product  and serialize it for transport  between  flight and 
ground. Packet  formats and link protocols are  completely 
hidden from  the level of data management.  Decoupling these 
two capabilities  keeps the design  and  testing  simpler  for 
each and allows for  independent improvements. 

A further  value  in decoupling  occurs  due  to the  fundamental 
difference in nature of these two domains at the level of 
system coordination.  In its  fullest  realization, space data 
transport  must  take  its place as  a peer in  the  larger  data 
transport  network covering everything from local hardwire 
communication within a  system, to proximity  links between 
sister  vehicles, to lander-orbiter  links  at  another  planet, to 
links  between  planets. Spanning this vast range with its 
attendant  physical exigencies makes  quality of service  a vital 
component of any data transport  framework that is 
attempting to pull such a  network  together.  Quality of 
service,  in  turn,  must be a  visible  participant in the 
coordination of system  activities,  whether it be  configuring 
radio equipment,  pointing  an  antenna,  or evaluating link 
characteristics. As prescribed, this is accomplished  through 
goals. That is,  quality of service  is a  state. 

Data management, too,  resides in a  physical  realm that links 
its actions to the rest of the  system  and  demands that it 
participate  in coordination processes. In this case the  status 
of data  products (existence,  content, size,  importance, 
location, and so on) collectively comprise a  set of states. 
Since  the goal of most JPL missions is the collection of data, 
goals on these data  product  states  become the key driver to 
most other mission  activities.  Interactions and trades 
between them can be  coordinated entirely within the  goal- 
directed  architecture. 

Bringing the whole of system  functionality within the  fold 
would not be  possible without the  clean separation of data 
management from  data  transport. 

Theme: Join  Navigation with Attitude Control 

Navigation and  attitude  control must build from a common 
mathematical base--Navigation and attitude  control  have 
been  weakly coupled  on most JPL missions  because, in 
empty space, they operate  on vastly different  time  scales and 
their  dynamics  usually don't greatly  affect  each other. As 
such,  navigation software and  attitude  control  software  have 
been  largely independent  development efforts and the 
interfaces  between them  have been ad hoc. In upcoming 
missions,  however, the  coupling  becomes much tighter. For 
example,  escape velocity near  an asteroid is so small that 
firing  thrusters  for attitude  control  can significantly  affect 
the trajectory of an  orbiting spacecraft.  Likewise,  docking 
with another  vehicle, as in a  sample-return  mission,  requires 
navigation and attitude corrections  on similar  time  scales. 

The  approach that MDS is taking  here, as in other  areas, is 



to design  common  architectural  mechanisms for common 
problems. Since  the  same  forces influence  navigation and 
attitude control,  the architecture  must  allow for a  common 
model; since both are solving  geometry  problems,  the 
architecture must provide for common solvers. 

Theme: Instrument the Software 

Instrument the  software  to  gain visibility into its operation, 
not just during  testing but  also during operation-Perhaps 
the most vexing  problem that operators  face during  a 
mission emergency is in not having  enough  information 
about  what’s  happening inside  the spacecraft to explain 
some anomalous behavior.  Software  developers  face  the 
same problem during system  testing  (albeit in less  stressful 
circumstances)  and  they  traditionally address  the problem by 
adding temporary, ad hoc  “instrumentation”, i.e., software 
instructions that output  some internal  state.  Such 
instrumentation is often  removed  later,  either  because it 
generates too much output  or because it reduces 
performance or because it bypasses the downlink  subsystem, 
outputting  directly to a  testbed console. Such  adding  and 
removing of temporary code is messy  at  best  and error-prone 
at  worst. 

To address  the need in a  standard way-as Mars Pathfinder 
and Deep  Space  One did-”DS defines an “event  logging 
framework” (ELF) that provides  a  standard  mechanism for 
logging  noteworthy  events,  whether  generated on the  flight 
side  or ground side. Importantly, ELF allows operators to 
control  the  nature  and amount of logging  by  controlling 
“entry policy” parameters  such  as event severity  level,  event 
IDS,  and  event  reporting  frequency. ELF reporting  functions 
are designed for  speed in discarding  events disabled  by  the 
entry  policy, so instrumentation (i.e., ELF calls)  can 
generally be left  in place,  even in  flight code.  The net  result 
is that software  instrumentation is encouraged  because it can 
be controlled  at  run  time  by  ground operators and  therefore 
can  remain  as  a  permanent  part of the software,  providing 
value  not just  during system  testing  but also  during mission 
operations. 

Logically, ELF provides  a  specialized  interface to Data 
Management and therefore  capitalizes on its capabilities  for 
accumulating  value  histories, for summarizing  them, and for 
discarding  old  and/or  less  important  data  products in order 
to make  room for new data  products. 

Theme:  Upward  Compatibility 

Design  interfaces to  accommodate  foreseeable  advances  in 
t echnologFMDS is intended to serve missions  for many 
years to come, and during that  time  there will be  numerous 
advances in software technology for control  systems,  fault 
detection & diagnosis, planning & scheduling,  databases, 
communication protocols,  etc.  MDS must  be  prepared to 
exploit such  technologies else it will become an obstacle 

rather  than an  enabler  for increasingly  challenging  missions, 
but MDS  also needs to maintain some architectural  stability 
to amortize its cost  over its  missions. The strategy  for 
achieving  this centers  around careful  design of architectural 
interfaces,  behind  which  a  variety of technical  approaches 
can  be used.  Specifically, MDS  designers consult with 
researchers to understand  how software interfaces may need 
to evolve,  and then implement  a  restricted  subset of  an 
interface  using  current  mission-ready  technology.  When  the 
more advanced  technology  becomes  mission-ready, they 
implement the fuller interface in an upward compatible 
manner,  namely, in a  manner that still  works for interface 
clients  that  use  the  restricted subset.  Thus, interface  client 
software is not forced to change  on  the  same schedule as 
interface  provider  software. 

The value of upward  compatibility is powerfully  illustrated 
in the  history of IBM. In 1964 when IBM introduced  the 
System/360 architecture,  they  transformed  the  computer 
industry with the first  “compatible”  family of computers. 
Software and peripherals worked  virtually  interchangeably 
on any of the  five original processors, so customer 
investments  were preserved when they  upgraded to a  more 
powerful processor.  IBM continued to improve  the 
technology over  the years,  but  always within the Systed36O 
architecture and its  extensions. Although the MDS 
architecture applies  to a much smaller  marketplace,  the 
benefits of upward  compatibility make sense  for MDS 
customers and providers. 

5. CUSTOMER BENEETS 

The main value of MDS is that it should enable customer 
missions to focus  on mission-specific  design  and 
development without  having to  create  and test a  supporting 
infrastructure. Customers will receive a set of pre-integrated 
and pre-tested  frameworks, complete with executable 
example uses of those  frameworks running on a  simulated 
spacecraft and mission. These  frameworks will be based on 
an object-oriented design  described in  Unified  Modeling 
Language  (UML) [Z], the lingua franca of MDS software 
design and  scenario  description. 

As  a  project, MDS  is balancing  a  long-term  architectural 
vision  against  a  near-term commitment to its  first  customer 
mission, Europa  Orbiter,  scheduled to launch in 2003. Such 
commitments  help focus  MDS design efforts  on pragmatic, 
well-understood mechanisms  for  supporting the  architectural 
themes. 

6. RELATED WORK 

In a 1995  joint study between  NASA Ames  and JPL known 
as the  New Millennium Autonomy  Architecture  Prototype 
(NewMAAP) a  number of existing concepts for  improving 
flight software were brought together  in  a  prototype  form. 
These  concepts included  goal-based commanding, closed- 
loop  control,  model-based diagnosis,  onboard  resource 



management,  and  onboard  planning.  When  the  Deep  Space 
One  (DS-1)  mission was subsequently  announced  as  a 
technology  validation  mission,  the  NewMAAP  project 
rapidly  segued  into  the  Remote  Agent  project [3]. In May 
1999  the  Remote  Agent  experiment  (RAX)  flew on DS-1 
and  provided  the  first in-flight demonstration of the 
concepts.  The  MDS  project, which is populated with many 
people who worked on or with RAX, was  established in 
April  1998 to define  and  develop  an  advanced  multi-mission 
data  system that unifies the flight,  ground,  and test elements 
in a  common  architecture.  That  architecture is shaped with 
the  themes  described in this paper,  some  of  which  were 
explored  and  refined  by  the  RAX  experience. 

at Bell Laboratories  on  the  monitoring of  telephone 
switching  systems and  on  the  design and development of 
R++, a  rule-based extension  to C++. Dan  holds a BS in 
electrical  engineering from  Rose-Hulman Institute of 
Technology, a M S  in  computer engineering from Stanford 
University,  and  a  Ph.D. in  computer science from  The 
University of Texas  at  Austin. 
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MDS  shares  some  architectural  concepts with the Altairis 
Mission  Control  System  (MCS) 111, a commercial  system 
that emphasizes  object-oriented  design,  finite  state  models, 
state-based  control,  separation  of  mission-specific  models 
from  reusable  software,  and  CORBA-compliant  inter-object 
communication.  MCS  particularly highlights  the  use of finite 
state  models in preference  to  rule-based  knowledge 
representation,  citing  the  limitations of rules in representing 
cohesive  “models”  that  are  well  organized,  easily  inspected, 
and  reusable. 
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